

CNARDUINO
L293D Stepper Motor Controller

COMPANY: CNARDUINO‐SHENZEN
 Copyright ©2014

P a g e | 1

L293D Stepper
motor controller

P a g e | 2

11.01 Overview

Arduino is a great starting point for electronics, and with a motor shield it can also be a nice tidy platform

for robotics and mechatronics. Here is a design for a full-featured motor shield that will be able to power

many simple to medium-complexity projects.

 connections for 5V 'hobby' servos connected to the Arduino's high-resolution dedicated timer - no

jitter!

 Up to 4 bi-directional DC motors with individual 8-bit speed selection (so, about 0.5% resolution)

 Up to 2 stepper motors (unipolar or bipolar) with single coil, double coil, interleaved or micro-

stepping.

 H-Bridges: L293D chipset provides 0.6A per bridge (1.2A peak) with thermal shutdown protection,

4.5V to 25V

 Pull down resistors keep motors disabled during power-up

 Big terminal block connectors to easily hook up wires (10-22AWG) and power

 Arduino reset button brought up top

 2-pin terminal block to connect external power, for seperate logic/motor supplies

 Tested compatible with Mega, Diecimila, & Duemilanove

P a g e | 3

11.02 Procedure to Use

This Motor Shield kit is a great motor controller for Arduino, but it does a little care to make sure it's used

correctly. Please read through all the User manual sections at left, especially the section about library

installation and power requirements!

P a g e | 4

Library Install

First Install the Arduino Library

Before you can use the Motor shield, you must install the AF_Motor Arduino library - this will instruct the

Arduino how to talk to the this Motor shield, and it isn't optional!

 First, grab the library from github

 Uncompress the ZIP file onto your desktop

 Rename the uncompressed folder AFMotor

 Check that inside AFMotor is AFMotor.cpp and AFMotor.h files. If not, check the steps above.

 Place the AFMotor folder into your arduinosketchfolder/libraries folder. For Windows, this will

probably be something like MY Documents/Arduino/libraries for Mac it will be something

likeDocuments/arduino/libraries. If this is the first time you are installing a library, you'll need to

create the libraries folder. Make sure to call it libraries exactly, no caps, no other name.

 Check that inside the libraries folder there is the AFMotor folder, and

inside AFMotor isAFMotor.cppAFMotor.h and some other files

 Quit and restart the IDE. You should now have a submenu called File->Examples->AFMotor-

>MotorParty

11.03 Power Usage

Powering your DC motors, voltage and current requirements

Motors need a lot of energy, especially cheap motors since they're less efficient. The first important thing to

figure out what voltage the motor is going to use. If you're lucky your motor came with some sort of

specifications. Some small hobby motors are only intended to run at 1.5V, but its just as common to have 6-

12V motors. The motor controllers on this shield are designed to run from 4.5V to 25V.

MOST 1.5-3V MOTORS WILL NOT WORK

Current requirements: The second thing to figure out is how much current your motor will need. The motor

driver chips that come with the kit are designed to provide up to 600 mA per motor, with 1.2A peak current.

Note that once you head towards 1A you'll probably want to put a heatsink on the motor driver, otherwise

you will get thermal failure, possibly burning out the chip.

On using the SN754410: Some people use the SN754410 motor driver chip because it is pin-compatible,

has output diodes and can provide 1A per motor, 2A peak. After careful reading of the datasheet and

discussion with TI tech support and power engineers it appears that the output diodes were designed for

P a g e | 5

ESD protection only and that using them as kickback-protection is a hack and not guaranteed for

performance. For that reason the kit does not come with the SN754410 and instead uses the L293D with

integrated kickback-protection diodes. If you're willing to risk it, and need the extra currrent, feel free to buy

SN754410's and replace the provided chips.

Need more power? Buy another set of L293D drivers and solder them right on top of the ones on the board

(piggyback). Voila, double the current capability! You can solder 2 more chips on top before it probably isnt

going to get you much benefit

You can't run motors off of a 9V battery so don't even waste your time/batteries! Use a big Lead Acid

or NiMH battery pack. Its also very much suggested that you set up two power supplies (split supply) one

for the Arduino and one for the motors. 99% of 'weird motor problems' are due to noise on the power line

from sharing power supplies and/or not having a powerful enough supply!

How to set up the Arduino + Shield for powering motors

Servos are powered off of the same regulated 5V that the Arduino uses. This is OK for the small hobby

servos suggested. If you want something beefier, cut the trace going to + on the servo connectors and wire

up your own 5-6V supply!

The DC motors are powered off of a 'high voltage supply' and NOT the regulated 5V. Don't connect the

motor power supply to the 5V line. This is a very very very bad idea unless you are sure you know what

you're doing!

There are two places you can get your motor 'high voltage supply' from. One is the DC jack on the Arduino

board and the other is the 2-terminal block on the shield that is labeled EXT_PWR. The DC Jack on the

Arduino has a protection diode so you won't be able to mess things up too bad if you plug in the wrong kind

of power. However the EXT_PWR terminals on the shield do not have a protection diode (for a fairly

good reason). Be utterly careful not to plug it in backwards or you will destroy the motor shield and/or

your Arduino!

Here's how it works:

P a g e | 6

If you would like to have a single DC power supply for the Arduino and motors, simply plug it into the

DC jack on the Arduino or the 2-pin PWR_EXT block on the shield. Place the power jumper on the motor

shield.

If you have a Diecimila Arduino, set the Arduino power source jumper to EXT. Note that you may have

problems with Arduino resets if the battery supply is not able to provide constant power, and it is not a

suggested way of powering your motor project

If you would like to have the Arduino powered off of USB and the motors powered off of a DC power

supply, plug in the USB cable. Then connect the motor supply to the PWR_EXT block on the shield. Do not

place the jumper on the shield. This is a suggested method of powering your motor project

(If you have a Diecimila Arduino, don't forget to set the Arduino power jumper to USB. If you have a

Diecimila, you can alternately do the following: plug the DC power supply into the Arduino, and place the

jumper on the motor shield.)

If you would like to have 2 seperate DC power supplies for the Arduino and motors. Plug in the supply

for the Arduino into the DC jack, and connect the motor supply to the PWR_EXT block. Make sure the

jumper is removed from the motor shield.

If you have a Diecimila Arduino, set the Arduino jumper to EXT. This is a suggested method of powering

your motor project

Either way, if you want to use the DC motor/Stepper system the motor shield LED should be lit indicating

good motor power.

P a g e | 7

Use of RC Servos

Hobby servos are the easiest way to get going with motor control. They have a 3-pin 0.1" female header

connection with +5V, ground and signal inputs. The motor shield simply brings out the 16bit PWM output

lines to two 3-pin headers so that its easy to plug in and go. They can take a lot of power so a 9V battery

wont last more than a few minutes!

The nice thing about using the onboard PWM is that its very precise and goes about its business in the

background. You can use the built in Servo library

Power for the Servos comes from the Arduino's on-board 5V regulator, powered directly from the USB or

DC power jack on the Arduino. If you need an external supply, cut the trace right below the servo pins (on

v1.2 boards) and connect a 5V or 6V DC supply directly. Using an external supply is for advanced users as

you can accidentally destroy the servos by connecting a power supply incorrectly!

When using the external supply header for servos, take care that the bottom of the header pins do not contact

the metal USB port housing on the Arduino. A piece of electrical tape on the housing will protect against

shorts.

11.04 Knob with RC Servo without motor controller

Control the position of a RC (hobby) servo motor with your Arduino and a potentiometer.

This example makes use of the Arduino servo library.

Hardware Required

 Arduino Board

 Servo Motor

 Potentiometer

 hook-up wire

Circuit

Servo motors have three wires: power, ground, and signal. The power wire is typically red, and should be

connected to the 5V pin on the Arduino board. The ground wire is typically black or brown and should be

connected to a ground pin on the Arduino board. The signal pin is typically yellow or orange and should be

connected to pin 9 on the Arduino board.

P a g e | 8

The potentiometer should be wired so that its two outer pins are connected to power (+5V) and ground, and

its middle pin is connected to analog input 0 on the Arduino.

Schematic

P a g e | 9

Code

// Controlling a servo position using a potentiometer (variable
//resistor)
// by Michal Rinott <http://people.interaction-ivrea.it/m.rinott>

#include <Servo.h>

Servo myservo; // create servo object to control a servo

int potpin = 0; // analog pin used to connect the potentiometer
int val; // variable to read the value from the analog pin

void setup()
{
 myservo.attach(9); // attaches the servo on pin 9 to the servo
//object
}

void loop()
{
 val = analogRead(potpin); // reads the value of the
//potentiometer (value between 0 and 1023)
 val = map(val, 0, 1023, 0, 179); // scale it to use it with the
//servo (value between 0 and 180)
 myservo.write(val); // sets the servo position
//according to the scaled value
 delay(15); // waits for the servo to get
//there
}

P a g e | 10

11.05 using stepper motors with motor controller

Stepper motors are great for (semi-)precise control, perfect for many robot and CNC projects. This motor

shield supports up to 2 stepper motors. The library works identically for bi-polar and uni-polar motors.

For unipolar motors: to connect up the stepper, first figure out which pins connected to which coil, and which

pins are the center taps. If it’s a 5-wire motor then there will be 1 that is the center tap for both coils. The

center taps should both be connected together to the GND terminal on the motor shield output block. then

coil 1 should connect to one motor port (say M1 or M3) and coil 2 should connect to the other motor port

(M2 or M4).

For bipolar motors: it’s just like unipolar motors except there’s no 5th wire to connect to ground. The code

is exactly the same.

Running a stepper is a little more intricate than running a DC motor but its still very easy

 Make sure you #include <AFMotor.h>

 Create the stepper motor object with AF_Stepper(steps, stepper#) to setup the motor H-bridge and

latches. Steps indicates how many steps per revolution the motor has. a 7.5degree/step motor has

360/7.5 = 48 steps. Stepper# is which port it is connected to. If you're using M1 and M2, its port 1.

If you're using M3 and M4 it's port 2

 Set the speed of the motor using setSpeed(rpm) where rpm is how many revolutions per minute you

want the stepper to turn.

P a g e | 11

 Then every time you want the motor to move, call

the step(#steps, direction, steptype) procedure.#stepsis how many steps you'd like it to

take. direction is either FORWARD or BACKWARD and the step type isSINGLE, DOUBLE.

INTERLEAVE or MICROSTEP.

 "Single" means single-coil activation, "double" means 2 coils are activated at once (for higher torque)

and "interleave" means that it alternates between single and double to get twice the resolution (but of

course its half the speed). "Microstepping" is a method where the coils are PWM'd to create smooth

motion between steps. Theres tons of information about the pros and cons of these different stepping

methods in the resources page.You can use whichever stepping method you want, changing it "on the

fly" to as you may want minimum power, more torque, or more precision.

 By default, the motor will 'hold' the position after its done stepping. If you want to release all the

coils, so that it can spin freely, call release()

 The stepping commands are 'blocking' and will return once the steps have finished.

Because the stepping commands 'block' - you have to instruct the Stepper motors each time you want them

to move. If you want to have more of a 'background task' stepper control, check out AccelStepper

library (install similarly to how you did with AFMotor) which has some examples for controlling two steppers

simultaneously with varying acceleration, here is guide to Arduino libraries.

#include <AFMotor.h>
AF_Stepper motor(48, 2);
void setup() {
 Serial.begin(9600); // set up Serial library at 9600 bps
 Serial.println("Stepper test!");
 motor.setSpeed(10); // 10 rpm

 motor.step(100, FORWARD, SINGLE);
 motor.release();
 delay(1000);
}

void loop() {
 motor.step(100, FORWARD, SINGLE);
 motor.step(100, BACKWARD, SINGLE);

 motor.step(100, FORWARD, DOUBLE);
 motor.step(100, BACKWARD, DOUBLE);

 motor.step(100, FORWARD, INTERLEAVE);
 motor.step(100, BACKWARD, INTERLEAVE);

 motor.step(100, FORWARD, MICROSTEP);
 motor.step(100, BACKWARD, MICROSTEP);
}

P a g e | 12

11.06 using DC Motors with motor controller

DC motors are used for all sort of robotic projects.

The motor shield can drive up to 4 DC motors bi-directionally. That means they can be driven forwards and

backwards. The speed can also be varied at 0.5% increments using the high-quality built in PWM. This means

the speed is very smooth and won't vary!

Note that the H-bridge chip is not meant for driving loads over 0.6A or that peak over 1.2A so this is

for smallmotors. Check the datasheet for information about the motor to verify its OK.

To connect a motor, simply solder two wires to the terminals and then connect them to either the M1, M2,

M3,or M4. Then follow these steps in your sketch

 Make sure you #include <AFMotor.h>

 Create the AF_DCMotor object with AF_DCMotor(motor#, frequency), to setup the motor H-bridge

and latches. The constructor takes two arguments.

The first is which port the motor is connected to, 1, 2, 3 or 4. Frequency is how fast the speed

controlling signal is For motors 1 and 2 you can

choose MOTOR12_64KHZ, MOTOR12_8KHZ, MOTOR12_2KHZ, or MOTOR12_1KHZ. A

P a g e | 13

high speed like 64KHz wont be audible but a low speed like 1KHz will use less power. Motors 3 &

4 are only possible to run at 1KHz and will ignore any setting given

 Then you can set the speed of the motor using setSpeed(speed) where the speed ranges from 0

(stopped) to 255 (full speed). You can set the speed whenever you want.

 To run the motor, call run(direction) where direction is FORWARD, BACKWARD or RELEASE.

Of course, the Arduino doesn't actually know if the motor is 'forward' or 'backward', so if you want

to change which way it thinks is forward, simply swap the two wires from the motor to the shield.

Code

#include <AFMotor.h>

AF_DCMotor motor(2, MOTOR12_64KHZ); // create motor #2, 64KHz pwm

void setup() {
 Serial.begin(9600); // set up Serial library at 9600 bps
 Serial.println("Motor test!");

 motor.setSpeed(200); // set the speed to 200/255
}

void loop() {
 Serial.print("tick");

 motor.run(FORWARD); // turn it on going forward
 delay(1000);

 Serial.print("tock");
 motor.run(BACKWARD); // the other way
 delay(1000);

 Serial.print("tack");
 motor.run(RELEASE); // stopped
 delay(1000);
}

P a g e | 14

11.07 AF_DCMotor Class

The AF_DCMotor class provides speed and direction control for up to four DC motors when used with this

Motor Shield. To use this in a sketch you must first add the following line at the beginning of your sketch:

1. #include <AFMotor.h>

AF_DCMotor motorname(portnum, freq)

This is the constructor for a DC motor. Call this constructor once for each motor in your sketch. Each motor

instance must have a different name as in the example below.

Parameters:

 port num - selects which channel (1-4) of the motor controller the motor will be connected to

 freq - selects the PWM frequency. If no frequency is specified, 1KHz is used by default.

P a g e | 15

Frequencies for channel 1 & 2 are:

 MOTOR12_64KHZ

 MOTOR12_8KHZ

 MOTOR12_2KHZ

 MOTOR12_1KHZ

Frequencies for channel 3 & 4 are:

 MOTOR34_64KHZ

 MOTOR34_8KHZ

 MOTOR34_1KHZ

Example:

1. AF_DCMotor motor4(4); // define motor on channel 4 with 1KHz default PWM
2. AF_DCMotor left_motor(1, MOTOR12_64KHZ); // define motor on channel 1 with 64KHz PWM

Note: Higher frequencies will produce less audible hum in operation, but may result in lower torque with

some motors.

P a g e | 16

setSpeed(speed)

Sets the speed of the motor.

Parameters:

 speed- Valid values for 'speed' are between 0 and 255 with 0 being off and 255 as full throttle.

Note: DC Motor response is not typically linear, and so the actual RPM will not necessarily be proportional

to the programmed speed.

run(cmd)

Sets the run-mode of the motor.

Parameters:

 cmd - the desired run mode for the motor

Valid values for cmd are:

 FORWARD - run forward (actual direction of rotation will depend on motor wiring)

 BACKWARD - run backwards (rotation will be in the opposite direction from FORWARD)

 RELEASE - Stop the motor. This removes power from the motor and is equivalent to

setSpeed(0). The motor shield does not implement dynamic breaking, so the motor may take some

time to spin down

Example:

motor.run(FORWARD);
delay(1000); // run forward for 1 second
motor.run(RELEASE);
delay(100); // 'coast' for 1/10 second
motor.run(BACKWARDS); // run in reverse

P a g e | 17

11.08 AF_Stepper Class

The AF_Stepper class provides single and multi-step control for up to 2 stepper motors when used with the

Adafruit Motor Shield. To use this in a sketch you must first add the following line at the beginning of your

sketch:

1. #include <AFMotor.h>

AF_Stepper steppername(steps, portnumber)

The AF_Stepper constructor defines a stepper motor. Call this once for each stepper motor in your

sketch. Each stepper motor instance must have a unique name as in the example below.

Parameters:

 steps - declare the number of steps per revolution for your motor.

 num - declare how the motor will be wired to the shield.

Valid values for 'num' are 1 (channels 1 & 2) and 2 (channels 3 & 4).

Example:

AF_Stepper Stepper1(48, 1); // A 48‐step‐per‐revolution motor on channels 1 & 2
AF_Stepper Stepper2(200, 2); // A 200‐step‐per‐revolution motor on channels 3 & 4

P a g e | 18

step(steps, direction, style)

Step the motor.

Parameters:

 steps - the number of steps to turn

 direction - the direction of rotation (FORWARD or BACKWARD)

 style - the style of stepping:

Valid values for 'style' are:

 SINGLE - One coil is energized at a time.

 DOUBLE - Two coils are energized at a time for more torque.

 INTERLEAVE - Alternate between single and double to create a half-step in between. This can

result in smoother operation, but because of the extra half-step, the speed is reduced by half too.

 MICROSTEP - Adjacent coils are ramped up and down to create a number of 'micro-steps'

between each full step. This results in finer resolution and smoother rotation, but with a loss in

torque.

Note: Step is a synchronous command and will not return until all steps have completed. For concurrent

motion of two motors, you must handle the step timing for both motors and use the "onestep()" function

below.

Example:

Stepper1.step(100, FORWARD, DOUBLE); // 100 steps forward using double coil stepping
Stepper2.step(100, BACKWARD, MICROSTEP); // 100 steps backward using double microstepping

P a g e | 19

setSpeed(RPMspeed)

set the speed of the motor

Parameters:

 Speed - the speed in RPM

Note: The resulting step speed is based on the 'steps' parameter in the constructor. If this does not match

the number of steps for your motor, you actual speed will be off as well.

Example:

Stepper1.setSpeed(10); // Set motor 1 speed to 10 rpm
Stepper2.setSpeed(30); // Set motor 2 speed to 30 rpm

onestep(direction, stepstyle)

Single step the motor.

Parameters:

 direction - the direction of rotation (FORWARD or BACKWARD)

 stepstyle - the style of stepping:

Valid values for 'style' are:

 SINGLE - One coil is energized at a time.

 DOUBLE - Two coils are energized at a time for more torque.

 INTERLEAVE - Alternate between single and double to create a half-step in between. This can

result in smoother operation, but because of the extra half-step, the speed is reduced by half too.

 MICROSTEP - Adjacent coils are ramped up and down to create a number of 'micro-steps'

between each full step. This results in finer resolution and smoother rotation, but with a loss in

torque.

Example:

Stepper1.onestep(FORWARD, DOUBLE); // take one step forward using double coil stepping

P a g e | 20

release()

Release the holding torque on the motor. This reduces heating and current demand, but the motor will not

actively resist rotation.

Example:

Stepper1.release(); // stop rotation and turn off holding torque.

11.09 Online Store Link to buy

 http://www.aliexpress.com/store/product/Stepper-Motor-Expension-Board-L293D-Motor-Control-

Shield-for-Arduino/1036551_1578135709.html

